Kummer's lemma for $ℤ_p$-extensions over totally real number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Forms over Totally Real Number Fields

A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...

متن کامل

Zp-Extensions of Totally Real Fields

We continue our investigations into complex and p-adic variants of H. M. Stark’s conjectures [St] for an abelian extension of number fields K/k. We have formulated versions of these conjectures at s = 1 using so-called ‘twisted zeta-functions’ (attached to additive characters) to replace the more usual L-functions. The complex version of the conjecture was given in [So3]. In [So4] we formulated...

متن کامل

Representations over Totally Real Fields

In this paper, we study the level lowering problem for mod 2 representations of the absolute Galois group of a totally real field F. In the case F = Q, this was done by Buzzard; here, we generalise some of Buzzard’s results to higher weight and arbitrary totally real fields, using Rajaei’s generalisation of Ribet’s theorem and previous work of Fujiwara and the author. 2000 Mathematics Subject C...

متن کامل

Quadratic extensions of totally real quintic fields

In this work, we establish lists for each signature of tenth degree number fields containing a totally real quintic subfield and of discriminant less than 1013 in absolute value. For each field in the list we give its discriminant, the discriminant of its subfield, a relative polynomial generating the field over one of its subfields, the corresponding polynomial over Q, and the Galois group of ...

متن کامل

Class number in totally imaginary extensions of totally real function fields

We show that, up to isomorphism, there are only finitely many totally real function fields which have any totally imaginary extension of a given ideal class number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1997

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-81-1-37-44